A Simple Sampling Lemma: Analysis and Applications in Geometric Optimization

نویسندگان

  • Bernd Gärtner
  • Emo Welzl
چکیده

Random sampling is an efficient method to deal with constrained optimization problems in computational geometry. In a first step, one finds the optimal solution subject to a random subset of the constraints; in many cases, the expected number of constraints still violated by that solution is then significantly smaller than the overall number of constraints that remain. This phenomenon can be exploited in several ways, and typically results in simple and asymptotically fast algorithms. Very often the analysis of random sampling in this context boils down to a simple identity (the sampling lemma) which holds in a general framework, yet has not been stated explicitly in the literature. In the more restricted but still general setting of LP-type problems, we prove tail estimates for the sampling lemma, giving Chernoff-type bounds for the number of constraints violated by the solution of a random subset. As an application, we provide the first theoretical analysis of multiple pricing, a heuristic used in the simplex method for linear programming in order to reduce a large problem to few small ones. This follows from our analysis of a reduction scheme for general LP-type problems, which can be considered as a simplification of an algorithm due to Clarkson. The simplified version needs less random resources and allows a Chernoff-type tail estimate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD

The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...

متن کامل

Estimation of Concentrations in Chemical Systems at Equilibrium Using Geometric Programming

Geometric programming is a mathematical technique, which has been developed for nonlinear optimization problems. This technique is based on the dual program with linear constraints. Determination of species concentrations in chemical equilibrium conditions is one of its applications in chemistry and chemical engineering fields. In this paper, the principles of geometric programming and its comp...

متن کامل

A simple proof of Zariski's Lemma

‎Our aim in this very short note is to show that the proof of the‎ ‎following well-known fundamental lemma of Zariski follows from an‎ ‎argument similar to the proof of the fact that the rational field‎ ‎$mathbb{Q}$ is not a finitely generated $mathbb{Z}$-algebra.

متن کامل

Computational fluid dynamics analysis and geometric optimization of solar chimney power plants by using of genetic algorithm

In this paper, a multi-objective optimization method is implemented by using of genetic algorithm techniques in order to determine optimum configuration of solar chimney power plant. The objective function which is simultaneously considered in the analysis is output power of the plant. Output power of the system is maximized. Design parameters of the considered plant include collector radius (R...

متن کامل

Optimal production and marketing planning with geometric programming approach

One of the primary assumptions in most optimal pricing methods is that the production cost is a non-increasing function of lot-size. This assumption does not hold for many real-world applications since the cost of unit production may have non-increasing trend up to a certain level and then it starts to increase for many reasons such as an increase in wages, depreciation, etc. Moreover, the prod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2001